Question Number	Answer	Mark
$\mathbf{1}$	The graph for sample A (for small extensions obeys Hooke's law as it)	
is a straight line	(1)	
	through the origin	$\mathbf{(1)}$

Question Number	Answer		Mark
3 (a)	Line not straight OR gradient not constant Force not proportional to extension OR to obey Hooke's Law, force should be proportional to extension	(1) (1)	2
3 (b)	Use of area under graph Work done $=2.5 \mathrm{~J}$ Example of calculation $0.5 \times 15 \times 0.33=2.48 \mathrm{~J}$ OR 1255 squares $\times 2 \times 10^{-3} \mathrm{~J}=2.51 \mathrm{~J}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
3 (c)	Elastic (tries to) return to a smaller/original length (So) will be in tension OR applies force /pull	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
3 (d)	Work done stretching the elastic greater OR area under stretching>area under releasing OR the area between the two lines represents the energy (So) energy must be dissipated (in process) OR energy transferred as heat OR energy transferred to internal energy	(1) (1)	2
	Total for question		8

Question Number	Answer		Mark
4(a)	$\begin{aligned} & \text { Use of } F=k x \\ & k=32\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$ Example of calculation $k=\frac{3.9 \mathrm{~N}}{\mathrm{a} .122 \mathrm{~m}}=32.0 \mathrm{~N} \mathrm{~m}^{-1}$	$\begin{aligned} & \text { (1) } \\ & (1) \end{aligned}$	2
4(b)(i)	$\begin{aligned} & \text { Use of } F=k x \mathbf{~ O R ~} F=m a \\ & F=4.1 \text { (N) (ecf) } \end{aligned}$ $\begin{aligned} & \text { Example of calculation } \\ & F=31.97 \mathrm{~N} \mathrm{~m}^{-1} \times 0.127 \mathrm{~m} \\ & F=4.06 \mathrm{~N} \end{aligned}$ OR $\begin{aligned} & F=0.4 \mathrm{~kg} \mathrm{x}^{2}\left(9.81 \mathrm{~m} \mathrm{~s}^{-2}+0.4 \mathrm{~m} \mathrm{~s}^{-2}\right) \\ & F=4.08 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
4(b)(ii)	Max 2 Can be answered using a description: Resultant force = force of spring on mass - weight Substitution of resultant force into $F=m a$ OR Could be answered using a calculation e.g. $\begin{aligned} & F=4.06 \mathrm{~N}-3.9 \mathrm{~N} \\ & a=\underline{0.16 \mathrm{~N}} \mathbf{~ O R} \text { clear substitution of any force into this equation. } \\ & 0.4 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	(1) (1) (1) (1)	2
4(b)(iii)	Use of $v=u+a t$ $v=0.8 \mathrm{~m} \mathrm{~s}^{-1}$ (allow ecf) Example of calculation $v=0+(0.4 \times 2)=0.8 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
4(b)(iv)	Graph correct shape i.e. 1 region of acceleration, 1 region of deceleration Constant velocity between		2
4(b)(v)	Use of area under graph to find distance OR use of appropriate equations of motion Distance $=4.0 \mathrm{~m}$ (correct answer only) Example of calculation $\begin{aligned} & \text { Area }=\left(1 / 2 \times 2 \mathrm{~s} \times 0.8 \mathrm{~m} \mathrm{~s}^{-1}\right)+\left(3 \mathrm{~s} \times 0.8 \mathrm{~m} \mathrm{~s}^{-1}\right)+\left(1 / 2 \times 2 \mathrm{~s} \times 0.8 \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \text { Area }=4.0 \mathrm{~m} \end{aligned}$	(1) (1)	2
4(b)(vi)	Spring extended beyond static extension OR extension increased at start (So) resultant force upwards		2
	Total for question		14

Question Number	Answer	Mark
5 (a)	Explain whether the spring obeys Hooke's law. States: Straight line shown / constant gradient (So) extension or change in length proportional to force (accept Δx or Δl or e proportional to F) / k constant (Yes, because extension or change in length proportional to force gets 2)	(1) (1)
5 (b)	Show that the stiffness of the spring is about $20 \mathrm{~N} \mathrm{~m}^{-1}$ Indication of use of (inverse) gradient, e.g. $k=F / \Delta x$ or with values obtainable from graph (accept extension/ force for first mark) Substitution of values as force/ extension Correct answer ($16\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$) Example of calculation $\begin{aligned} & \mathrm{k}=\mathrm{F} / \Delta \mathrm{x} \\ & \mathrm{k}=1.6 \mathrm{~N} /(0.51 \mathrm{~m}-0.41 \mathrm{~m}) \\ & \mathrm{k}=1.6 \mathrm{~N} / 0.1 \mathrm{~m} \\ & =16 \mathrm{~N} \mathrm{~m}^{-1} \end{aligned}$	(1) (1) (1)
5 (c) (i)	Calculate force on spring Use of $F=k \Delta x$ (must be extension, not length) Correct answer (5.1 N) [ecf] $\begin{aligned} & \text { Example of calculation } \\ & \begin{array}{l} \mathrm{F}=\mathrm{k} \Delta \mathrm{x} \\ =16 \mathrm{~N} \mathrm{~m}^{-1} \times(0.41 \mathrm{~m}-0.09 \mathrm{~m}) \\ =5.1 \mathrm{~N} \end{array} \end{aligned}$ $\text { (Use of } 20 \mathrm{~N} \mathrm{~m}^{-1} \rightarrow 6.4 \mathrm{~N} \text {) }$	(1) (1)
$5 \text { (c) }$ (ii)	Calculate energy stored Use of $\mathrm{E}=1 / 2 \mathrm{~F} \Delta \mathrm{x}==1 / 2 \mathrm{k}(\Delta \mathrm{x})^{2}$ Correct answer (0.82 J) Example of calculation $\begin{aligned} & \mathrm{E}=1 / 2 \mathrm{~F} \Delta \mathrm{x} \\ & =0.5 \times 5.1 \mathrm{~N} \times(0.41 \mathrm{~m}-0.09 \mathrm{~m}) \\ & =0.82 \mathrm{~J} \end{aligned}$	(1)

5 (d)	Explain effect on spring	
	QWC - spelling of technical terms must be correct and the answer must be organised in a logical sequence	
	Change in length greater / compression greater More force More elastic energy / more strain energy / more energy stored / more potential energy / greater $1 / 2 \mathrm{k}(\Delta \mathrm{x})^{2} /$ more work done (on spring) Greater acceleration (Therefore) more kinetic energy (and) greater speed	(1)
	(1) Total for question	(1)

Question Number	Answer		Mark
6(a)	$\begin{aligned} & \text { Use of } W=m g \\ & \text { Use of } F=(-) k x \\ & k=123\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \\ & \text { (use of } g=10 \mathrm{~N} \mathrm{~kg}^{-1} \rightarrow 125\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \text { scores } 2 \text { marks) } \\ & \\ & \text { Example of calculation } \\ & W=0.1 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}=0.981 \mathrm{~N} \\ & (-) 0.981 \mathrm{~N}=(-) k \times 0.008 \mathrm{~m} \\ & k=122.6 \mathrm{~N} \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \\ & \text { (1) } \end{aligned}$	3
6(b)	(If the load is too high) the elastic limit (of the spring) will be exceeded Or the maximum load is at the elastic limit (accept $1.2 \mathrm{~kg} / 12 \mathrm{~N}$ for maximum load) The spring will not return to its original length/position Or the spring will be permanently deformed The idea that the calibrations of the scale will not be correct e.g. the calibration/scale is now incorrect/inaccurate $\mathbf{O r}$ the spring constant will change (Accept converse argument for keeping the load below the maximum load)	(1) (1) (1)	3
	Total for question		6

