Question Number	Answer		Mark
1	The graph for sample A (for small extensions obeys Hooke's law as it)		
	is a straight line	(1)	
	through the origin	(1)	
	The graph for B is not a straight line (through the origin)	(1)	3
	Total for question		3

Question Number	Answer		Mark
2 (a)	Use of $\Delta x = (1.12 \times \text{diameter} - \text{diameter})$ e.g. $\Delta x = 1.27 \times 10^{-11}$ m Use of $F = k\Delta x$ $F = 1.4 \times 10^{-8}$ N	(1) (1) (1)	3
	$\frac{\text{Example of calculation}}{\Delta x = 0.12 \times 1.06 \times 10^{-10} \text{ m} = 1.27 \times 10^{-11} \text{ m}}$ $F = 1130 \text{ N m}^{-1} \times 1.27 \times 10^{-11} \text{ N}$ $F = 1.44 \times 10^{-8} \text{ N}$		
2 (b)(i)	Max 3 For positive force/extension the spring is in tension/stretched/extended (accept after/right of origin)	(1)	
	For negative force/extension the spring is in compression/squashed (accept before/left of origin)	(1)	
	From $-0.7 (\pm 0.1)$ N to $1.5(\pm 0.1)$ N the spring obeys Hooke's law	(1)	
	At 1.5 (\pm 0.1) N the spring has reached its elastic limit (allow limit of proportionality, yield point) Or at -0.9 (\pm 0.1) N the spring is fully compressed (allow coils touching)	(1)	3
	(answers may be given in terms of extension 1.5 N \rightarrow 7.6 (± 0.4) cm, -0.9 N \rightarrow -4.0 (± 0.4) cm and -0.7 N \rightarrow - 3.6 (± 0.4) cm)		
2 (b)(ii)	Use of gradient Or pairs of points from the graph within the linear region	(1)	
	$k = 20 \text{ N m}^{-1} \text{ Or } 0.20 \text{ N cm}^{-1}$ (allow 19 to 21 N m ⁻¹)	(1)	2
	Example of calculation		
	gradient = $\frac{7.4 \times 10^{-4} \text{ m}}{1.5 \text{ N}} = 0.0493 \text{ m N}^{-1}$		
	$k = \frac{1}{\text{gradient}} = \frac{1}{0.0493} = 20.3 \text{ N m}^{-1}$		
*2(c)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	MP1 and 2 are for atom separation decreasing When pushed together the repulsive force is the greater force	(1)	
	(because) the repulsive graph is steeper (at smaller separations) Or repulsive force increases more rapidly	(1)	
	MP3 is for atom separation increasing. When pulled apart the repulsive force is the smaller force Or repulsive force is zero but attractive force is still present	(1)	3
	Total for question		11

Question	Answer		Mark
Number			
3 (a)	Line not straight OR gradient not constant	(1)	
	Force not proportional to extension OR to obey Hooke's Law, force should		
	be proportional to extension	(1)	2
3 (b)	Use of area under graph	(1)	
	Work done = 2.5 J	(1)	2
	Example of calculation		
	$0.5 \ge 15 \ge 0.33 = 2.48 \text{ J}$		
	OR 1255 squares $\times 2 \times 10^{-3}$ J = 2.51 J		
3 (c)	Elastic (tries to) return to a smaller/original length	(1)	
	(So) will be in <u>tension</u> OR applies <u>force /pull</u>	(1)	2
3 (d)	Work done stretching the elastic greater		
	OR area under stretching>area under releasing		
	OR the area between the two lines represents the energy	(1)	
	(So) energy must be dissipated (in process) OR energy transferred as heat		
	OR energy transferred to internal energy	(1)	2
	Total for question		8

Question Number	Answer		Mark
4(a)	Use of $F = kx$	(1)	
	$k = 32 (\text{N m}^{-1})$	(1)	2
	Example of calculation		
	$k = \frac{3.9 \mathrm{N}}{0.122 \mathrm{m}} = 32.0 \mathrm{N} \mathrm{m}^{-1}$		
4 (L)(2)		(1)	
4(b)(i)	Use of $F = kx$ OR $F = ma$ F = 4.1 (N) (ecf)	(1)	2
	F = 4.1 (N) (ec1)	(1)	2
	Example of calculation		
	$F = 31.97 \text{ N m}^{-1} \times 0.127 \text{ m}$		
	F = 4.06 N		
	OR		
	$F = 0.4 \text{ kg x} (9.81 \text{ m s}^{-2} + 0.4 \text{ m s}^{-2})$		
	F = 4.08 N		
4(b)(ii)	Max 2		
	Can be answered using a description:		
	Resultant force = force of spring on mass - weight	(1)	
	Substitution of resultant force into $F = ma$	(1)	
	OR		
	Could be answered using a calculation e.g.		
	F = 4.06 N - 3.9 N	(1)	
	$a = \underline{0.16 \text{ N}}_{0.4 \text{ m s}^{-2}}$ OR clear substitution of any force into this equation.	(1)	2
4(b)(iii)	Use of $v = u + at$	(1)	
	$v = 0.8 \text{ m s}^{-1}$ (allow ecf)	(1)	2
	Example of calculation $\frac{1}{2}$		
	$v = 0 + (0.4 \text{ x } 2) = 0.8 \text{ m s}^{-1}$		
4(b)(iv)	Graph correct shape i.e. 1 region of acceleration, 1 region of deceleration	(1)	
	Constant velocity between	(1)	2
4(b)(v)	Use of area under graph to find distance		
	OR use of appropriate equations of motion	(1)	
	\mathbf{D} isten es $(\mathbf{A} \mathbf{D})$ es (sourcest our entre)	(1)	2
	Distance = 4.0 m (correct answer only)	(1)	2
	Example of calculation		
	$\frac{12 \times 10^{-10}}{12 \times 2} = (\frac{1}{2} \times 2 \text{ s} \times 0.8 \text{ m s}^{-1}) + (3 \text{ s} \times 0.8 \text{ m s}^{-1}) + (\frac{1}{2} \times 2 \text{ s} \times 0.8 \text{ m s}^{-1})$		
	Area = $(72 \times 2.8 \times 0.8 \text{ m/s}) + (73.8 \times 0.8 \text{ m/s}) + (72 \times 2.8 \times 0.8 \text{ m/s})$ Area = 4.0 m		
4(b)(vi)	Spring extended beyond static extension OR extension increased at start	(1)	
	(So) resultant force upwards	(1)	2
	Total for question	(1)	14

Question Number	Answer	Mark
5 (a)	Explain whether the spring obeys Hooke's law.	
	Straight line shown / constant gradient (So) extension or change in length proportional to force	(1)
	(accept Δx or ΔI or e proportional to F) / k constant (Yes, because extension or change in length proportional to	(1)
5 (b)	force gets 2) Show that the stiffness of the spring is about 20 N m ⁻¹	
5 (6)	Indication of use of (inverse) gradient, e.g. $k = F/\Delta x$ or with values obtainable from graph (accept extension/force for first mark) Substitution of values as force/extension Correct answer (16 (N m ⁻¹))	(1) (1) (1)
	Example of calculation $k = F/\Delta x$ k = 1.6 N / (0.51 m - 0.41 m) k = 1.6 N / 0.1 m $= 16 N m^{-1}$	
5 (c) (i)	Calculate force on spring	
	Use of $F = k\Delta x$ (must be extension, not length) Correct answer (5.1 N) [ecf]	(1) (1)
	Example of calculation $F = k\Delta x$ = 16 N m ⁻¹ x (0.41 m - 0.09 m) = 5.1 N (Use of 20 N m ⁻¹ \rightarrow 6.4 N)	
5 (c) (ii)	Calculate energy stored	
	Use of $E = \frac{1}{2} F\Delta x = \frac{1}{2} k(\Delta x)^2$ Correct answer (0.82 J)	(1) (1)
	Example of calculation $E = 1/2 F\Delta x$ $= 0.5 \times 5.1 \text{ N} \times (0.41 \text{ m} - 0.09 \text{ m})$ = 0.82 J	

5 (d)	Explain effect on spring	
	QWC - spelling of technical terms must be correct and the answer must be organised in a logical sequence	
	Change in length greater / compression greater More force More elastic energy / more strain energy / more energy stored / more potential energy / greater $\frac{1}{2} k(\Delta x)^2$ / more work done (on spring) Greater acceleration (Therefore) more kinetic energy (and) greater speed	(1) (1) (1) (1) (1) (1)
		max 3
	Total for question	12

Question	Answer		Mark
Number			
6(a)	Use of $W = mg$	(1)	
	Use of $F = (-) kx$	(1)	
	$k = 123 (\text{N m}^{-1})$	(1)	3
	(use of $g = 10 \text{ N kg}^{-1} \rightarrow 125 \text{ (N m}^{-1}\text{) scores 2 marks}$)		
	Example of calculation		
	$W = 0.1 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.981 \text{ N}$		
	$(-) 0.981 \text{ N} = (-) k \times 0.008 \text{ m}$		
	$k = 122.6 \text{ N m}^{-1}$		
6(b)	(If the load is too high) the elastic limit (of the spring) will be exceeded		
	Or the maximum load is at the elastic limit	(1)	
	(accept 1.2 kg/12 N for maximum load)		
	The spring will not return to its original length/position		
	Or the spring will be permanently deformed	(1)	
	The idea that the calibrations of the scale will not be correct e.g. the calibration/scale is now incorrect/inaccurate Or the spring constant will change	(1)	3
	(Accept converse argument for keeping the load below the maximum load)		
	Total for question		6